JFIF x x C C " } !1AQa "q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w !1AQ aq"2B #3Rbr{
File "GoogleCloudAiplatformV1FeatureViewIndexConfig.php"
Full Path: /home/palsarh/web/palsarh.in/public_html/vendor/google/apiclient-services/src/Aiplatform/GoogleCloudAiplatformV1FeatureViewIndexConfig.php
File size: 6.86 KB
MIME-type: text/x-php
Charset: utf-8
<?php
/*
* Copyright 2014 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
namespace Google\Service\Aiplatform;
class GoogleCloudAiplatformV1FeatureViewIndexConfig extends \Google\Collection
{
/**
* Should not be set.
*/
public const DISTANCE_MEASURE_TYPE_DISTANCE_MEASURE_TYPE_UNSPECIFIED = 'DISTANCE_MEASURE_TYPE_UNSPECIFIED';
/**
* Euclidean (L_2) Distance.
*/
public const DISTANCE_MEASURE_TYPE_SQUARED_L2_DISTANCE = 'SQUARED_L2_DISTANCE';
/**
* Cosine Distance. Defined as 1 - cosine similarity. We strongly suggest
* using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead of COSINE distance. Our
* algorithms have been more optimized for DOT_PRODUCT distance which, when
* combined with UNIT_L2_NORM, is mathematically equivalent to COSINE distance
* and results in the same ranking.
*/
public const DISTANCE_MEASURE_TYPE_COSINE_DISTANCE = 'COSINE_DISTANCE';
/**
* Dot Product Distance. Defined as a negative of the dot product.
*/
public const DISTANCE_MEASURE_TYPE_DOT_PRODUCT_DISTANCE = 'DOT_PRODUCT_DISTANCE';
protected $collection_key = 'filterColumns';
protected $bruteForceConfigType = GoogleCloudAiplatformV1FeatureViewIndexConfigBruteForceConfig::class;
protected $bruteForceConfigDataType = '';
/**
* Optional. Column of crowding. This column contains crowding attribute which
* is a constraint on a neighbor list produced by
* FeatureOnlineStoreService.SearchNearestEntities to diversify search
* results. If NearestNeighborQuery.per_crowding_attribute_neighbor_count is
* set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than
* K entities of the same crowding attribute are returned in the response.
*
* @var string
*/
public $crowdingColumn;
/**
* Optional. The distance measure used in nearest neighbor search.
*
* @var string
*/
public $distanceMeasureType;
/**
* Optional. Column of embedding. This column contains the source data to
* create index for vector search. embedding_column must be set when using
* vector search.
*
* @var string
*/
public $embeddingColumn;
/**
* Optional. The number of dimensions of the input embedding.
*
* @var int
*/
public $embeddingDimension;
/**
* Optional. Columns of features that're used to filter vector search results.
*
* @var string[]
*/
public $filterColumns;
protected $treeAhConfigType = GoogleCloudAiplatformV1FeatureViewIndexConfigTreeAHConfig::class;
protected $treeAhConfigDataType = '';
/**
* Optional. Configuration options for using brute force search, which simply
* implements the standard linear search in the database for each query. It is
* primarily meant for benchmarking and to generate the ground truth for
* approximate search.
*
* @param GoogleCloudAiplatformV1FeatureViewIndexConfigBruteForceConfig $bruteForceConfig
*/
public function setBruteForceConfig(GoogleCloudAiplatformV1FeatureViewIndexConfigBruteForceConfig $bruteForceConfig)
{
$this->bruteForceConfig = $bruteForceConfig;
}
/**
* @return GoogleCloudAiplatformV1FeatureViewIndexConfigBruteForceConfig
*/
public function getBruteForceConfig()
{
return $this->bruteForceConfig;
}
/**
* Optional. Column of crowding. This column contains crowding attribute which
* is a constraint on a neighbor list produced by
* FeatureOnlineStoreService.SearchNearestEntities to diversify search
* results. If NearestNeighborQuery.per_crowding_attribute_neighbor_count is
* set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than
* K entities of the same crowding attribute are returned in the response.
*
* @param string $crowdingColumn
*/
public function setCrowdingColumn($crowdingColumn)
{
$this->crowdingColumn = $crowdingColumn;
}
/**
* @return string
*/
public function getCrowdingColumn()
{
return $this->crowdingColumn;
}
/**
* Optional. The distance measure used in nearest neighbor search.
*
* Accepted values: DISTANCE_MEASURE_TYPE_UNSPECIFIED, SQUARED_L2_DISTANCE,
* COSINE_DISTANCE, DOT_PRODUCT_DISTANCE
*
* @param self::DISTANCE_MEASURE_TYPE_* $distanceMeasureType
*/
public function setDistanceMeasureType($distanceMeasureType)
{
$this->distanceMeasureType = $distanceMeasureType;
}
/**
* @return self::DISTANCE_MEASURE_TYPE_*
*/
public function getDistanceMeasureType()
{
return $this->distanceMeasureType;
}
/**
* Optional. Column of embedding. This column contains the source data to
* create index for vector search. embedding_column must be set when using
* vector search.
*
* @param string $embeddingColumn
*/
public function setEmbeddingColumn($embeddingColumn)
{
$this->embeddingColumn = $embeddingColumn;
}
/**
* @return string
*/
public function getEmbeddingColumn()
{
return $this->embeddingColumn;
}
/**
* Optional. The number of dimensions of the input embedding.
*
* @param int $embeddingDimension
*/
public function setEmbeddingDimension($embeddingDimension)
{
$this->embeddingDimension = $embeddingDimension;
}
/**
* @return int
*/
public function getEmbeddingDimension()
{
return $this->embeddingDimension;
}
/**
* Optional. Columns of features that're used to filter vector search results.
*
* @param string[] $filterColumns
*/
public function setFilterColumns($filterColumns)
{
$this->filterColumns = $filterColumns;
}
/**
* @return string[]
*/
public function getFilterColumns()
{
return $this->filterColumns;
}
/**
* Optional. Configuration options for the tree-AH algorithm (Shallow tree +
* Asymmetric Hashing). Please refer to this paper for more details:
* https://arxiv.org/abs/1908.10396
*
* @param GoogleCloudAiplatformV1FeatureViewIndexConfigTreeAHConfig $treeAhConfig
*/
public function setTreeAhConfig(GoogleCloudAiplatformV1FeatureViewIndexConfigTreeAHConfig $treeAhConfig)
{
$this->treeAhConfig = $treeAhConfig;
}
/**
* @return GoogleCloudAiplatformV1FeatureViewIndexConfigTreeAHConfig
*/
public function getTreeAhConfig()
{
return $this->treeAhConfig;
}
}
// Adding a class alias for backwards compatibility with the previous class name.
class_alias(GoogleCloudAiplatformV1FeatureViewIndexConfig::class, 'Google_Service_Aiplatform_GoogleCloudAiplatformV1FeatureViewIndexConfig');