JFIF x x C C " } !1AQa "q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w !1AQ aq"2B #3Rbr{
File "GoogleCloudAiplatformV1IndexDatapoint.php"
Full Path: /home/palsarh/web/palsarh.in/public_html/vendor/google/apiclient-services/src/Aiplatform/GoogleCloudAiplatformV1IndexDatapoint.php
File size: 5.12 KB
MIME-type: text/x-php
Charset: utf-8
<?php
/*
* Copyright 2014 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
namespace Google\Service\Aiplatform;
class GoogleCloudAiplatformV1IndexDatapoint extends \Google\Collection
{
protected $collection_key = 'restricts';
protected $crowdingTagType = GoogleCloudAiplatformV1IndexDatapointCrowdingTag::class;
protected $crowdingTagDataType = '';
/**
* Required. Unique identifier of the datapoint.
*
* @var string
*/
public $datapointId;
/**
* Optional. The key-value map of additional metadata for the datapoint.
*
* @var array[]
*/
public $embeddingMetadata;
/**
* Required. Feature embedding vector for dense index. An array of numbers
* with the length of [NearestNeighborSearchConfig.dimensions].
*
* @var float[]
*/
public $featureVector;
protected $numericRestrictsType = GoogleCloudAiplatformV1IndexDatapointNumericRestriction::class;
protected $numericRestrictsDataType = 'array';
protected $restrictsType = GoogleCloudAiplatformV1IndexDatapointRestriction::class;
protected $restrictsDataType = 'array';
protected $sparseEmbeddingType = GoogleCloudAiplatformV1IndexDatapointSparseEmbedding::class;
protected $sparseEmbeddingDataType = '';
/**
* Optional. CrowdingTag of the datapoint, the number of neighbors to return
* in each crowding can be configured during query.
*
* @param GoogleCloudAiplatformV1IndexDatapointCrowdingTag $crowdingTag
*/
public function setCrowdingTag(GoogleCloudAiplatformV1IndexDatapointCrowdingTag $crowdingTag)
{
$this->crowdingTag = $crowdingTag;
}
/**
* @return GoogleCloudAiplatformV1IndexDatapointCrowdingTag
*/
public function getCrowdingTag()
{
return $this->crowdingTag;
}
/**
* Required. Unique identifier of the datapoint.
*
* @param string $datapointId
*/
public function setDatapointId($datapointId)
{
$this->datapointId = $datapointId;
}
/**
* @return string
*/
public function getDatapointId()
{
return $this->datapointId;
}
/**
* Optional. The key-value map of additional metadata for the datapoint.
*
* @param array[] $embeddingMetadata
*/
public function setEmbeddingMetadata($embeddingMetadata)
{
$this->embeddingMetadata = $embeddingMetadata;
}
/**
* @return array[]
*/
public function getEmbeddingMetadata()
{
return $this->embeddingMetadata;
}
/**
* Required. Feature embedding vector for dense index. An array of numbers
* with the length of [NearestNeighborSearchConfig.dimensions].
*
* @param float[] $featureVector
*/
public function setFeatureVector($featureVector)
{
$this->featureVector = $featureVector;
}
/**
* @return float[]
*/
public function getFeatureVector()
{
return $this->featureVector;
}
/**
* Optional. List of Restrict of the datapoint, used to perform "restricted
* searches" where boolean rule are used to filter the subset of the database
* eligible for matching. This uses numeric comparisons.
*
* @param GoogleCloudAiplatformV1IndexDatapointNumericRestriction[] $numericRestricts
*/
public function setNumericRestricts($numericRestricts)
{
$this->numericRestricts = $numericRestricts;
}
/**
* @return GoogleCloudAiplatformV1IndexDatapointNumericRestriction[]
*/
public function getNumericRestricts()
{
return $this->numericRestricts;
}
/**
* Optional. List of Restrict of the datapoint, used to perform "restricted
* searches" where boolean rule are used to filter the subset of the database
* eligible for matching. This uses categorical tokens. See:
* https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
*
* @param GoogleCloudAiplatformV1IndexDatapointRestriction[] $restricts
*/
public function setRestricts($restricts)
{
$this->restricts = $restricts;
}
/**
* @return GoogleCloudAiplatformV1IndexDatapointRestriction[]
*/
public function getRestricts()
{
return $this->restricts;
}
/**
* Optional. Feature embedding vector for sparse index.
*
* @param GoogleCloudAiplatformV1IndexDatapointSparseEmbedding $sparseEmbedding
*/
public function setSparseEmbedding(GoogleCloudAiplatformV1IndexDatapointSparseEmbedding $sparseEmbedding)
{
$this->sparseEmbedding = $sparseEmbedding;
}
/**
* @return GoogleCloudAiplatformV1IndexDatapointSparseEmbedding
*/
public function getSparseEmbedding()
{
return $this->sparseEmbedding;
}
}
// Adding a class alias for backwards compatibility with the previous class name.
class_alias(GoogleCloudAiplatformV1IndexDatapoint::class, 'Google_Service_Aiplatform_GoogleCloudAiplatformV1IndexDatapoint');