JFIF x x C C " } !1AQa "q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w !1AQ aq"2B #3Rbr{
File "GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics.php"
Full Path: /home/palsarh/web/palsarh.in/public_html/vendor/google/apiclient-services/src/Aiplatform/GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics.php
File size: 4 KB
MIME-type: text/x-php
Charset: utf-8
<?php
/*
* Copyright 2014 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
namespace Google\Service\Aiplatform;
class GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics extends \Google\Collection
{
protected $collection_key = 'confidenceMetrics';
/**
* The Area Under Precision-Recall Curve metric. Micro-averaged for the
* overall evaluation.
*
* @var float
*/
public $auPrc;
/**
* The Area Under Receiver Operating Characteristic curve metric. Micro-
* averaged for the overall evaluation.
*
* @var float
*/
public $auRoc;
protected $confidenceMetricsType = GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics::class;
protected $confidenceMetricsDataType = 'array';
protected $confusionMatrixType = GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix::class;
protected $confusionMatrixDataType = '';
/**
* The Log Loss metric.
*
* @var float
*/
public $logLoss;
/**
* The Area Under Precision-Recall Curve metric. Micro-averaged for the
* overall evaluation.
*
* @param float $auPrc
*/
public function setAuPrc($auPrc)
{
$this->auPrc = $auPrc;
}
/**
* @return float
*/
public function getAuPrc()
{
return $this->auPrc;
}
/**
* The Area Under Receiver Operating Characteristic curve metric. Micro-
* averaged for the overall evaluation.
*
* @param float $auRoc
*/
public function setAuRoc($auRoc)
{
$this->auRoc = $auRoc;
}
/**
* @return float
*/
public function getAuRoc()
{
return $this->auRoc;
}
/**
* Metrics for each `confidenceThreshold` in
* 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and `positionThreshold` =
* INT32_MAX_VALUE. ROC and precision-recall curves, and other aggregated
* metrics are derived from them. The confidence metrics entries may also be
* supplied for additional values of `positionThreshold`, but from these no
* aggregated metrics are computed.
*
* @param GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics[] $confidenceMetrics
*/
public function setConfidenceMetrics($confidenceMetrics)
{
$this->confidenceMetrics = $confidenceMetrics;
}
/**
* @return GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetricsConfidenceMetrics[]
*/
public function getConfidenceMetrics()
{
return $this->confidenceMetrics;
}
/**
* Confusion matrix of the evaluation.
*
* @param GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix $confusionMatrix
*/
public function setConfusionMatrix(GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix $confusionMatrix)
{
$this->confusionMatrix = $confusionMatrix;
}
/**
* @return GoogleCloudAiplatformV1SchemaModelevaluationMetricsConfusionMatrix
*/
public function getConfusionMatrix()
{
return $this->confusionMatrix;
}
/**
* The Log Loss metric.
*
* @param float $logLoss
*/
public function setLogLoss($logLoss)
{
$this->logLoss = $logLoss;
}
/**
* @return float
*/
public function getLogLoss()
{
return $this->logLoss;
}
}
// Adding a class alias for backwards compatibility with the previous class name.
class_alias(GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics::class, 'Google_Service_Aiplatform_GoogleCloudAiplatformV1SchemaModelevaluationMetricsClassificationEvaluationMetrics');