JFIF x x C C " } !1AQa "q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w !1AQ aq"2B #3Rbr{
File "XPSResponseExplanationParameters.php"
Full Path: /home/palsarh/web/palsarh.in/public_html/vendor/google/apiclient-services/src/CloudNaturalLanguage/XPSResponseExplanationParameters.php
File size: 2.66 KB
MIME-type: text/x-php
Charset: utf-8
<?php
/*
* Copyright 2014 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
namespace Google\Service\CloudNaturalLanguage;
class XPSResponseExplanationParameters extends \Google\Model
{
protected $integratedGradientsAttributionType = XPSIntegratedGradientsAttribution::class;
protected $integratedGradientsAttributionDataType = '';
protected $xraiAttributionType = XPSXraiAttribution::class;
protected $xraiAttributionDataType = '';
/**
* An attribution method that computes Aumann-Shapley values taking advantage
* of the model's fully differentiable structure. Refer to this paper for more
* details: https://arxiv.org/abs/1703.01365
*
* @param XPSIntegratedGradientsAttribution $integratedGradientsAttribution
*/
public function setIntegratedGradientsAttribution(XPSIntegratedGradientsAttribution $integratedGradientsAttribution)
{
$this->integratedGradientsAttribution = $integratedGradientsAttribution;
}
/**
* @return XPSIntegratedGradientsAttribution
*/
public function getIntegratedGradientsAttribution()
{
return $this->integratedGradientsAttribution;
}
/**
* An attribution method that redistributes Integrated Gradients attribution
* to segmented regions, taking advantage of the model's fully differentiable
* structure. Refer to this paper for more details:
* https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural
* images, like a picture of a house or an animal. If the images are taken in
* artificial environments, like a lab or manufacturing line, or from
* diagnostic equipment, like x-rays or quality-control cameras, use
* Integrated Gradients instead.
*
* @param XPSXraiAttribution $xraiAttribution
*/
public function setXraiAttribution(XPSXraiAttribution $xraiAttribution)
{
$this->xraiAttribution = $xraiAttribution;
}
/**
* @return XPSXraiAttribution
*/
public function getXraiAttribution()
{
return $this->xraiAttribution;
}
}
// Adding a class alias for backwards compatibility with the previous class name.
class_alias(XPSResponseExplanationParameters::class, 'Google_Service_CloudNaturalLanguage_XPSResponseExplanationParameters');